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Abstract—Ice buildup on wind turbine blades is a significant
issue, leading to operational risks and reduced efficiency. Con-
ventional ice detection methods, such as visual inspection, power
curve analysis or specialised sensors, are often slow, inefficient,
or costly. This paper proposes an approach using 0-dimensional
persistence homology from topological data analysis (TDA) ap-
plied to tower and blade vibration spectra. This method extracts
key features representing the lifespan of the sub-level sets of the
spectra, allowing the formulation of a clearer supervised learning
problem. The resulting persistence diagrams are embedded into
persistence images and persistence rank functions. Persistence
images are employed alongside convolutional neural networks
(CNN) to distinguish asymmetrical ice distribution on one or two
blades as well as symmetrical ice distribution across three blades
from normal conditions. For the symmetrical ice distribution
scenario, persistence rank functions with functional principal
component analysis (FPCA) and support vector machines (SVM)
offer a simpler classification. This approach not only improves
ice detection accuracy but also reduces equipment costs and
maintenance, promising enhanced wind turbine blade monitoring
and maintenance efficiency.

Note to Practitioners—This study is motivated by the need
for an accurate ice detection strategy in wind turbine blades
that ensures precise and reliable detection. It utilises standard
data from wind turbine structural vibrations to avoid additional
expenses associated with specialised sensors. Unlike traditional
faults, the gradual accumulation of ice on wind turbine blades
permits the use of more intricate data transformations such
as topological data analysis (TDA), which would otherwise be
too computationally intensive for anomalies requiring detection
within seconds. Additionally, this approach enables a more
refined detection algorithm, crucial for identifying cases in which
the ice distribution is symmetric across the wind turbine rotor,
which does not produce imbalance loads in the structure and
therefore has a subtler effect.

Index Terms—Topological data analysis, anomaly detection,
wind energy, time-series analysis, machine learning.
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TMOSPHERIC icing on wind turbines encompasses two

main types [[1]]: in-cloud icing (rime ice or glaze) and
precipitation icing (freezing rain or drizzle, wet snow), each
with distinct characteristics and formation conditions. Rime
ice, occurring at temperatures between 0°C and -20°C, consists
of supercooled water droplets from clouds or fog that freeze
upon impact. It forms asymmetrically as soft or hard rime,
and it is distinguished by its irregular crystalline structure
and adherence to surfaces. Glaze, induced by freezing rain
or in-cloud icing, creates a smooth, transparent ice layer with
strong adhesion, typically at temperatures between 0°C and -
6°C. Wet snow accretion, formed by sticky partly melted snow
crystals, occurs between 0°C and +3°C, with the potential
to freeze upon temperature decrease. These different forms
of atmospheric icing present varied densities and adhesion
properties, impacting wind turbine development and posing
challenges for mitigation and removal.

Icing on wind turbine blades can significantly reduce their
efficiency by altering their aerodynamic profile. The added
weight of the ice can also cause imbalance issues, leading
to increased stress on the turbine components and potentially
affecting its structural integrity. Additionally, ice shedding
from the blades can pose a safety hazard to nearby personnel
and property. Visual inspections or remote monitoring sys-
tems equipped with cameras are typically used to directly
observe the condition of the turbine blades for signs of
ice accumulation [2]]. These methods may not be practical
for continuous monitoring, especially in remote locations or
during adverse weather conditions. Changes in power output
or turbine performance metrics, such as rotor speed or pitch
angle deviations, can also indicate the presence of ice on
the blades affecting aerodynamic efficiency, provided that the
variables being monitored are not influenced by factors other
than icing [3]-[5]. Issues associated with data management,
such as the need for large data storage, vulnerability to
cyberattacks, and unwillingness of data owners to share their
data, are tackled in [6] by training of deep learning models
in a distributed manner via a federated learning framework.
Lastly, specialised icing sensors may be installed on the blades
to directly detect the presence of ice [7]]. These sensors can
utilise various technologies such as capacitance, infrared, or
ultrasonic methods to detect ice buildup. Their main issue is
that they require additional equipment and installation costs.

This study aims to achieve accurate and cost-effective icing
diagnosis by exploiting the available SCADA data. SCADA
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data provides real-time monitoring of various variables related
to wind turbine operation and structural dynamics. These data
offer valuable insights into the condition of the wind turbine,
without incurring extra expenses. A series of mathematical
transformations are subsequently applied to tower deflection
and blade root bending moment signals to enhance the clarity
of the diagnosis. First, the proposed method computes the fast
Fourier transform (FFT) of the mentioned variables in order
to identify abnormalities in the distribution and amplitude of
the harmonics. Tower deflection dynamics will allow us to see
abnormal vibrations due to the asymmetric ice distribution in
the rotor, while blade root bending moments will show more
clearly the slight increase in the amplitude of individual blade
vibrations even if the ice is evenly distributed in the three
blades. The novelty of this paper resides in the additional
feature extraction method applied to the spectra, based on 0-
dimensional (sub-level set) persistent homology, a technique
from topological data analysis (TDA). The objective is to
automatically find out a reduced set of features by encod-
ing the topological information of the sub-level sets of the
spectra, so that the decision-making process is performed in
that new feature space instead of directly using the spectra.
This information can be used to compute different topolog-
ical summaries which are amenable to be used by machine
learning algorithms. Two supervised learning frameworks will
be compared based on two different topological summaries:
image classification of persistence images using convolutional
neural networks (CNN) and functional principal component
analysis (FPCA) along with support vector machines (SVM)
applied to persistence rank functions. To the knowledge of the
authors, this is the first time sub-level set homology is used
as feature extractor in FFT spectra for time-series anomaly
detection. No prior applications of this technique have been
found within industrial contexts, particularly in the field of
energy production.

While modern wind turbines have blade root sensors in-
stalled, tower deflection is typically estimated with a Kalman
filter using accelerometer measurements (among others) to-
gether with a standard model comprising the main wind
turbine dynamics. The Normalised Unscented Kalman filter
(NUKEF) derived in [8] is used for state estimation to avoid is-
sues regarding ill-conditioned covariances due to the presence
of both large and small states (e.g. generator torque compared
to pitch angle).

A 15MW wind turbine simulation model in the software
GH Bladed was provided by Emerson to generate data in both
normal and icing conditions for the training of the machine
learning algorithms as well as for model validation. GH Bladed
facilitates the simulation of icing conditions in one, two and
three blades separately. Moreover, different wind conditions
were used to account for various degrees of turbulence, and
wind speeds ranging from 8m/s to 24 m/s were considered.
This will guarantee that the achieved accuracy reflects real-
world conditions and that the method can be effectively
applied in practical scenarios.

II. PROBLEM SETTINGS

The IEC 61400-1 standard [9] defines three wind classes,
denoted as I, II, III, and further subdivided into A, B, and
C categories. Each class is defined based on particular wind
conditions characterised by v, representing the maximum
10 min average wind speed over a 50-year period, and tur-
bulence intensity ¢;, which measures the typical variation in
wind within a 10 min timeframe. This classification is shown
in Table [l Class S corresponding to special wind or other
external conditions has not been included.

TABLE I: Basic parameters for wind turbine classes [9]]

Windclass [ T | I | IO
Ures [m/s] [ 50 [ 425 ] 375
At 1] 0.16
B t [] 0.14
C t[] 0.12

In this case, the distinction between class I, II, and III is
not relevant, as only wind speeds within the operational range
of the wind turbine are being simulated. Additionally, class A
has been omitted from simulations due to the limitations of the
wind turbine components’ design. Including such turbulence
would exceed the turbine’s load design limits, requiring com-
ponent reinforcement, which would change modal response
and increase costs. Consequently, simulations for classes IB
and IC will be used.

Furthermore, two distinct turbulence models have also been
considered: normal turbulence model (NTM), which represents
the normal range of turbulence conditions experienced by a
wind turbine over time, and extreme turbulence model (ETM),
which represents the extreme or severe turbulence conditions
that a wind turbine might encounter sporadically. ETM is
commonly used to analyse the response of the turbine to these
extreme events and to ensure that the turbine can withstand
such conditions without failure. Check [9] for a detailed
definition of the models for the different wind conditions.
As ETM is considered in the simulations, GH Bladed sets
a minimum wind speed of 8 m/s to ensure the presence of
extreme turbulence is meaningful. The maximum wind speed
value for safe wind turbine operation is set to 24 m/s.
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Fig. 1: Comparison between the different wind turbulence
models and wind classes simulated in GH Bladed for a
simulation with average mean wind speed of 14 m/s.
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To simulate ice accretion on the blades, the mass distribution
of the blade can be adjusted accordingly. Following the
guidelines outlined in [[10], which detail calculations for the
presence of ice in the rotor, three scenarios will be explored:
ice formation on one, two, and three blades. These ice distri-
bution scenarios produce different effects in blade and tower
vibrations [[11]]: mass imbalance resulting from asymmetrical
ice mass distribution on the blades considerably increases the
fatigue on the wind turbine structure, while symmetrical ice
mass distribution has a much more subtle effect, as seen in
Fig. 3] The ice mass distribution, denoted as mass per unit
length, is assumed to be concentrated at the leading edge.
Starting from zero at the rotor axis, it linearly increases to a
magnitude represented by p. at half the radius, maintaining a
constant value up to the outermost radius. The value of p. is
determined by [10]:

He = Pe kcmin (Cmax + Cmin) (l)

Here, 11, [kg/m] represents the mass distribution at the leading
edge of the rotor blade at half the rotor radius. Parameters
include ice density (p. = 700kg/m3), and the coefficient F,
defined as:

0.00675 + 0.3 ¢~ 032 #/Fa )

where R represents the rotor radius, R; = 1m, ¢4, Stands
for the maximum chord length, and c¢,,;, is the chord length
at the blade tip, extrapolated linearly from the blade contour
as seen in Fig. 2|
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Fig. 2: Maximum and minimum chord length for the GH
Bladed 15 MW wind turbine model. The red and green curves
represent the centre of mass and shear centre respectively.
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Fig. 3: Normal scenario and the three icing scenarios con-
sidered for tower foreaft deflection (left), normal scenario
and symmetrical ice mass distribution in 3 blades for blade
flapwise root bending moment (right). Both simulations have
an average mean wind speed of 14m/s.

III. PROPOSED STRATEGY

The detection algorithm utilises 10 min windows of data
from tower foreaft deflection and blade flapwise root bending

moments, obtained from GH Bladed simulations for a 15 MW
wind turbine model. The simulation sample time is 0.05s. The
different wind conditions and classes mentioned in Section [II]
are used to account for all possible scenarios and to achieve
realistic results. Tower foreafeﬂection data helps distin-
guishing between normal conditions and asymmetrical ice
mass distribution scenarios (that is, ice accumulation on one or
two blades). Conversely, data from root bending moments en-
ables more precise detection in cases of symmetrical ice mass
distribution (that is, ice present on all three blades). While
modern wind turbines typically provide direct measurements
for root bending moments, tower deflection must be estimated
via Kalman filtering. This estimation involves using tower
acceleration measurements obtained from an accelerometer in
conjunction with a standard aerodynamic and structural model,
along with measurements for wind speed, rotor speed, power,
and pitch angle. Further details on this estimation process are
provided in Section

The subsequent procedure is illustrated in the workflow
outlined in Fig. 4] Signals from the two variables under
consideration are subjected to frequency domain analysis to
achieve a clearer and more stable depiction of the impact
of ice on the blades. Subsequently, sub-level set homology
from TDA is applied to extract features that capture the most
significant harmonics by analysing the lifespan of sub-level
sets of the spectra across increasing levels. The outcome
of this analysis is then represented through two topological
summaries: persistence images and persistence rank functions,
which are amenable to machine learning algorithms. The
processed data is organised into dictionaries, with fields
corresponding to different wind speeds. This procedure is
elaborated in detail in Section[V] and it has been implemented
in Julia using RIPSERER.JL [13] for the generation
of cubical complex filtrations and the corresponding
persistence diagrams, PERSISTENCEDIAGRAMS.JL
[14] for the persistence image embedding, and
DISCRETEPERSISTENTHOMOLOGYTRANSFORM.JL [I115]]
for the persistence rank function embedding and subsequent
application of FPCA.

The two computed topological summaries are used in two
different schemes. Section [VI] delves into the classification of
persistence images using CNNs (implemented with KERAS
in Python), whereas Section treats each persistence rank
function as a score in the principal component space using
FPCA. Then, these scores are used to define decision regions
distinguishing normal conditions from those affected by ice us-
ing SVM. A subsequent discussion compares both approaches.

It is important to remark that tower and blade dynamics
will significantly change depending on the mean wind speed
being considered. As the range of wind speeds increases,
it becomes more challenging for a unique machine learning
algorithm to generalise effectively, which decreases accuracy

Note that tower side-to-side deflection is more commonly used for detect-
ing excessive oscillations due to an unbalanced rotor [12]. However, there is
not much difference in comparison to foreaft deflection if the rotor remains
balanced due to a symmetrical ice mass distribution. The same procedure
presented in this paper could have been applied to tower side-to-side spectra,
but taking into account that unbalanced oscillations are easily seen in both,
it was decided to keep the focus on out-of-plane vibrations.
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Fig. 4: Proposed workflow.

and reliability. Consequently, a decision was made to develop
individual classifiers for each 2m/s interval within the wind
turbine’s operational range considered, spanning from 8 to
24m/s. Depending on the real-time mean wind speed, the
appropriate classifier among the nine trained ones will be
selected and employed for diagnostic purposes.

The 10 min windows of tower foreaft deflection data used
in the training of the classifiers amount to 192 per 2m/s wind
speed interval, which comprises 4 operation scenarios (normal
and ice conditions in 1, 2, and 3 blades), each encompassing
2 turbulence models (NTM and ETM), further divided into 2
wind classes (IB and IC), for which 12 different wind seeds
were simulated. For the blade flapwise root bending moments,
a total of 288 windows were utilised. This encompasses
data from 3 blades for 2 operation scenarios (normal and
ice conditions in all 3 blades), which contain the same 2
turbulence models, 2 wind classes and 12 wind seeds.

IV. ESTIMATION OF TOWER FOREAFT DEFLECTION

TABLE II: Model Constants

Name Description
Ay Rotor area
Ct Tower damping
Jy Generator moment of inertia
Jr Rotor moment of inertia
ket Tower stiffness
Mty Equivalent tower mass
R Rotor radius
Mg Generator efficiency
L Mechanical losses
& Damping factor of pitch actuator
p Air density
Tg Generator time constant
we Natural frequency of pitch actuator

Kalman filtering techniques are widely known for their abil-
ity to provide optimal estimates of system states by efficiently
combining noisy sensor measurements with dynamic system
models. The Unscented Kalman Filter (UKF) is commonly
used when dealing with nonlinear system dynamics and non-
Gaussian noise distributions, which makes it well-suited to
handle nonlinear wind turbine aerodynamics. The procedure

TABLE III: Model Variables

Name Description
Cp Power coefficient (look-up table)
Cy Thrust coefficient (look-up table)
F Thrust
N Mean wind speed process noise
ne Wind turbulence process noise
P Power
Ty Generator torque
Ty,. ; Generator torque reference
Tr Aerodynamic torque
Um Mean wind speed
[ Wind speed at the rotor
Vi Wind speed turbulent component
Tt Tower foreaft deflection
0 Collective pitch
Oref Collective pitch reference
A Tip-speed ratio
wWp Kaimal spectrum peak frequency
Wy Rotor speed

is well-known and will not be discussed here; see [16]] for an
in depth description.

The standard aerodynamic model derived from 1-
dimensional momentum theory is used by the UKF instead
of complex Blade Element Momentum (BEM) models [17].
While BEM models, used by simulation software like GH
Bladed and OpenFAST, accurately model rotor aerodynamics,
they prove challenging for control or real-time state estimation
due to their complexity and the iterative computations required
to determine key variables. The full state-space model as
presented in [18] (excluding dynamic inflow corrections) is
rewritten hereunder for completeness:

(1—pa) T — Ty
T =77 N 3
(Jr + Jg) ©)
T, = 5 ARGy 6.) @
1
F =2 pAd Cul,)) 5)
a= ot (6)
Ur
Vp = U + Vg — Xt (7
'L‘)t = —Wp ('Um) Vg + wp(vm) ny (8)
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D = Nom, )
. 1 .

Ty = (F — kt Ty — C¢ l’t) (10)

mteq

0 =wOres — 2wy &0 —wi (1)
. T, .. —T,

Tg — gref g (12)

Tg
P =n,Tyw, (13)

Check Tables [T and [IT]] for a description of the constants and
variables involved. The power and thrust coefficients (C), and
C}) in Eqgs. [ and [5] are given in the form of a look-up table as
a function of the blade pitch angle, 3, and the tip-speed ratio,
A. The equivalent tower mass in Eq. my,,, is computed
assuming that all the mass is located in a point at a height 7
from the ground as my,, = I; /H 2, where I, is the moment of
inertia of the tower. The exact value of I; is unknown, so it is
computed by approximating its shape to a hollow cylinder of
outer radius r; and average wall thickness of 0.04m as I; =
me/12 (3 (r? + (re — 0.04)2) + H?) + my(H/2)? + mp. H2.
In the previous expression, m; refers to the total mass of
the tower, m;(H/2)? comes from applying the parallel axis
theorem to move the axis from the centre of the cylinder
to its edge, and my,. H 2 accounts for the nacelle and rotor
inertia contribution. The tower stiffness, k;, and damping, c;,
are found from the expressions below, using the corresponding
damping ratio, &1, and natural frequency of the 1%¢ vibration
mode, wi, taken from the modal analysis of the 15 MW wind
turbine:

Ct Ky
w1 =

&1 (14)

= 72 5
my., W1 mi,,

The state, input and measurement vectors are defined as
follows:

x:{wr v @ 00 T, u vm} (15)
u= [0y Ty.,] (16)
y=|w & 0 P v, a7

leading to the following state-space representation with addi-
tive noise:

x = f(x,u) +n
y = h(x,u) +v

(18)
19)

In order to define the process noise covariance, @), it is
necessary to review the wind model introduced in [18] and
[19]. When the wind model is defined in continuous-time
(Egs. [8|and [9), n can be interpreted as continuous-time white
noise corresponding to a Wiener process w = [ ndt, which
has a certain incremental covariance Cov(w(tz) — w(t1))
defined based on a realistic “’size” of wind variation. Starting
with the mean wind speed in Eq.[9] this stochastic differential
equation corresponding to a random walk can be more easily
analysed by expressing it in discrete time form:

Um [k] = Um [k - 1] + T nm[k - 1]7 Nm € NID(07 02 ) (20)

m

Here, n,,, denotes zero-mean white noise with variance o?2,.

Consequently, the variance of v, increases with each time

step, reaching k o2, after k steps. Therefore, deviations beyond
2k o,, are unlikely. Assuming a mean wind speed variation
of approximately 2m/s over 10 min, o, can be defined as:

(2m/s)?
600

The turbulence term of the wind speed has zero mean
and variance dependent on the mean wind speed, and is
approximated by a first order low pass filter driven by white
noise as seen in Eq. [8| The frequency w, is chosen to give
the same bandwidth as the peak frequency for the Kaimal
spectrum [20]:

21

Om =

Uy T

wp =5 (22)
where L = 8.1-A; = 8.1-42 = 340.2 [9]. Discretizing Eq. B]
using Euler and defining a = 1 — T,w,, yields the standard
formula for an infinite-impulse response (IIR) low pass filter:

vilk] = avi[k—1]+(1—a) ns[k—1], ny € NID(0,07) (23)

Considering a stationary stochastic process, it is possible to
calculate the variance of the previous expression as follows:

Var(v;) = a® Var(vs) + (1 — a)? Var(ny) (24)

Defining Var(n;) = o2, Var(v;) = o2

v, and rearranging
terms yields:

(1-a)
o =S

The turbulence intensity is defined as ¢; = o, /v, Isolating

(25)

oy, and introducing it in Eq. 23] yields:
1—a?
=tivm | — 26
Ot v 1—a)? (26)

The diagonal terms of the process noise covariance matrix,
@, corresponding to the mean and turbulent wind speed
components are then the following:

Var (”;L”nt) - (”;“—L”)Qaf 7)
Var (n,,) = o2, (28)

The rest of the diagonal elements have been roughly defined
based on the average uncertainty of the model predictions
when compared to simulation data. The measurement noise
covariance, R, has been defined based on the typical errors
for the corresponding sensors: 1.7% of the rated rotor speed,
2% of the standard deviation of the tower acceleration, 0.1° for
the pitch angle, 1% of rated value for the power and 0.5m/s
for the wind speed at the rotor.

For a reliable implementation, it is necessary to solve the
issue of scale in the state variables. The presence of both large
and small values (e.g. generator torque compared to pitch
angles) produces ill-conditioned covariances which impair
filter performance. The Normalised Unscented Kalman Filter
(NUKEF) introduced in [8]] propagates the standard deviation
and correlation matrices of the states instead of the covariance,
resulting in lower condition numbers when computing the
covariance square root and when obtaining the Kalman gain.
Consequently, the implementation of the NUKF was deemed
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appropriate for this study. Some of the estimated states can
be seen in Fig. ] for a simulation with average wind speed
of 14m/s. The estimation results are relatively noisy due
to the large process noise covariance reflecting the inherent
uncertainty of the simplified aerodynamic model, in an effort
to keep the state estimation realistic.

0.95

—— 2 (NUKF)
1 ——a; (Bladed)

0.85

%

Rotor speed [rad/s]

bt

Tower deflection [m]

0 150 300 450 600 0 150 300 450 600
Time [s] Time [s]

—T, (Bladed)
— T, (NUKF)

Generator torque [Nm]

Wind speed at rotor [m/s]

0 150 300 450 600
Time [s]

0 150 300 450 600

Time [s]
Fig. 5: Some of the NUKF estimated states for a 10min
simulation with average mean wind speed of 14m/s, NTM
wind conditions and IB wind class. Our variable of interest
is the tower foreaft deflection x; (top, right). Note that noisy
Bladed data has been given to the NUKF, but has been plotted
without noise for the sake of clarity.

V. FEATURE EXTRACTION VIA FAST FOURIER
TRANSFORM AND SUBLEVEL SET PERSISTENT
HOMOLOGY

A well-known method for investigating the dynamic be-
haviour of the structural components of a wind turbine is
through frequency spectral analysis, which allows for the
identification and characterisation of the frequency compo-
nents present in the vibration signals. This analysis aids in
identifying the changes of the dominant frequencies due to the
presence of ice, even amidst the presence of noise. Computing
the discrete Fourier transform of the signals with the FFT
algorithm reveals the frequency peaks corresponding to the
main modes of vibration of the wind turbine tower and blades.
Figure [6] (left) shows a comparison between the 4 operating
scenarios considered for a 14 m/s simulation of tower foreaft
deflection with NTM wind conditions and IB wind class. The
impact of ice accumulation on one or two blades primarily
affects frequencies around 1P (0.127Hz in the simulation
shown in Fig.[6). A frequency range spanning from 0.05 Hz to
0.37 Hz is selected as main focus to capture the effects of ice,
as its impact is minimal for frequencies outside that range. The
two asymmetrical ice mass distribution scenarios are easily
distinguishable from normal conditions in the tower foreaft
deflection spectra, whereas the effect is very subtle when
ice is evenly distributed across all three blades. Fortunately,
the impact of a symmetrical ice mass distribution is more
pronounced in the blade flapwise root bending moments.

015 |, nOrMAl — 6 e M, mOTMAl
El =1, ice on 1 blade é‘ 4.0x10 _J\[,/l ice on 3 blades
"o 012 =z, ice on 2 blades|{ £~ .
) t 6
= x, ice on 3 blades %) 3.0x10
E 0.09 g
= £ 2.0x10°
’é“ 0.06 =
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< 0'03#‘ é 1.0x10f
LLTUTIEN ) TVERRY

005 010 015 020 0.25 0.30
Frequency [Hz|

0.05 OIOFI?eg:uelilé(; [I(_)Ii.ia 0.30
Fig. 6: Tower foreaft deflection (left) and blade flapwise root
bending moment spectra (right) for NTM wind conditions
and IB wind class showing the four wind turbine operation
scenarios considered for a simulation with mean wind speed
of 14m/s.

The spectra presented could be analysed to pinpoint the har-
monics experiencing larger alterations caused by the presence
of ice, and a threshold could be defined to discern acceptable
variations from ice-induced effects. This would be useful in
the case of an unbalanced rotor [[12]], but could not be precise
enough to reveal the subtle effect of symmetric ice mass
distribution. Alternatively, the spectra could be directly fed to
a classifier to solve a supervised learning problem. Instead, it
was decided to obtain a more informative object that captures
the amplitude of the most prominent harmonics automatically,
reducing this way the number of features and making the
problem clearer and more separable. To accomplish that, O-
dimensional persistent homology from TDA was used.

Topological data analysis (TDA) is a field of data analysis
used to gain insights into complex data sets. It is based onprin-
ciples from algebraic topology, which studies the properties
of shapes that are preserved under continuous deformations.
TDA aims to understand the shape and structure of data by
providing a summary of the connectedness of these data. The
focus of this work lies on 0-dimensional topological features,
also known as connected components. Connected components
provide insights into the excursion sets of single-variable
functions, denoted below as ¢, which correspond to the spectra
under consideration. The sub-level sets will be considered for
this work, but a similar analysis could be done with the super-
level sets.

Let X be a topological space in R¢ for some d € N. For
a given level set r € R, the sub-level set of a tame function
¢ : X — R at level r is defined by:

X, (9) =67 ((—o0, 1)) = {u € X, ¢(u) <1}

and its O-dimensional homology group is denoted by
Hy(X,-(¢)), which describs the connected components at level
r, and whose rank g, the 0t" Betti number, is the number of
connected components at level r. Note that a tame function
has excursion sets with finitely many connected components.
In this context, ¢ : R — R; however, the definitions in
this section will maintain generality to resemble the notation
present in the literature [21].

One important property is that, for all level sets s, € R
with s < r, and for all connected component C' € Hy(Xs(¢)),
there exists a unique connected component C’ € Hy(X,.(¢))
such that C C C’. Hence, there is an induced map ¢, , :
Hy(X(¢)) — Ho(X,-(¢)) which tells us how the connected

(29)
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components change from level s to 7. Choosing n different lev-
elsry <rg <---<r, we can define a filtration as the nested
sequence Ho (X, (¢)) C Ho(Xr,(4)) C -+ C Ho(X,, (9)).

Computationally, these filtrations have been defined using
cubical complexes, which provide a flexible framework for
discretising spaces [22]]. A cubical complex is constructed
from a finite collection of cubes of varying dimensions, glued
together according to certain rules. Consider the topological
space X represented by a cubical complex, where each vertex
represents a point in some domain (e.g., a grid in a 2-
dimensional plane). To construct a sub-level set filtration using
the function ¢, which maps the vertices of X to R, it is
necessary to extend it to edges and faces of the complex. For
each edge, the function is assigned the value of the higher of its
two endpoint vertices. Similarly, for each face, the function is
assigned the value of the highest among the values assigned to
its defining edges. The filtration is defined by the increasing
sequence of values 1 < ry < --- < 7,, where each X,,
represents the subcomplex of X consisting of vertices, edges,
and faces for which ¢ is less than or equal to r;.

Given r € R and C' € Hy(X,(¢)), the set of births of
connected components is:

b(C) =inf{s <¢|C €Im(ps,)} (30)
and the set of all deaths is:
d(C) = sup{u < r|VC' € (p;’i((pt?u(c», a1

b(C") > b(C)}

Using the births and deaths of connected components, it is
possible to construct a barcode featuring bars represented by
intervals [b(C), d(C)]. Alternatively, by plotting births on the
x-axis and deaths on the y-axis, an object called persistence
diagram is generated in the form of a scatter plot and denoted

as D(¢) (Fig.[7).
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Fig. 7: Filtration snapshot on the normal tower deflection
spectra at level r; (left) and the corresponding persistence
diagram (right) for a simulation with mean wind speed of
14m/s, NTM wind conditions and IB wind class. Note that the
connected component with oo lifetime has not been considered
in this example.

There are several metrics that can be defined on the space of
persistence diagrams, such as the Bottleneck and Wasserstein
distances. One of the most fundamental stability theorems in
persistent homology is the Bottleneck stability theorem, which
requires the definition of a partial matching between the con-
sidered persistence diagrams, denoted as M : D(f) < D(g).

We use the [, metric for the cost associated with a matched
pair of points is (p,q) € M : ||p — q||c0, While the cost for an
unmatched pair is s € D(f) LU D(g) : ||s — 5||o0, Where 5 is
the projection of s onto the diagonal, typically denoted as A.
Consequently, the cost of a matching is determined as:

cost(M) = max{ (Ilp —dll)

(Ils = 8lloo)}

sup

(p.q)eM
sup

seED(f)\M

s€D(g)\M
sen

(32)

Subsequently, we obtain a distance, also called the Bottleneck
distance dg, between D(f) and D(g):

d5(D(f), D(g)) = inf (cost(M)) 33)

The Bottleneck stability theorem is then formulated as:

Theorem 1. (Stability) [23]] For any tame functions f,g :
X — R, we have

ds(D(f), D(9)) <I|f = gllee-

A similar stability theorem can be formulated using the
Wasserstein distance, see [24] for the latest results on the
matter.

The Bottleneck stability theorem shows that the spectra
under consideration is not necessarily more separable in the
space of persistence diagrams than in the original space, but
automatically extracting this reduced set of 0-dimensional
topological features will allow subsequent machine learning
techniques to only focus on the changes in the most prominent
harmonics, while the others are not as influential, as they may
be topological noise.

Handling the space of persistence diagrams poses chal-
lenges, particularly in defining the notion of mean (Fréchet
mean) due to its computationally intensive nature and the
possibility of non-uniqueness [25]]. Therefore, it is common
practise to embed them into a Hilbert space, where such oper-
ations become straightforward. Examples of these embeddings
include persistence images or persistence rank functions, as
utilised in this paper.

A persistence image [26] takes the persistence diagram in
birth/persistence coordinates and treats it as a pixel image,
where the value of each pixel depends on the density of
topological features in it. Thus, this can be seen as a 2-
D vector, which is amenable to standard machine learning
algorithms such as CNNGs. It is important to remark that direct
pixelisation should not be performed for stability purposes of
the algorithm. Instead, the image should be smoothed by a
Gaussian to ensure sufficient homogeneity.

The persistence rank function [27]], represented by Eq.
assigns an integer value that corresponds to the number of
points within the region (—oo, s] X [r,00) of the persistence
diagram. It is a functional summary which comes equipped
with a range of standard statistical techniques such as FPCA.

Bo(s,r) :=rank(p, ), fors<r (34)
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Fig. 8: Persistence image (left) and persistence rank function
(right) of the persistence diagram from the scenario presented

in Fig.

VI. PERSISTENCE IMAGE CLASSIFICATION WITH
CONVOLUTIONAL NEURAL NETWORKS

Persistence images of size 40 x 40 pixels and standard
deviation of the smoothing Gaussian of ¢ = 0.008 were
generated for each tower deflection persistence diagram out
of the 192 available for each wind speed interval of 2m/s.
All persistence images for a certain wind speed interval
have the same birth/persistence range, computed based on
the connected component with highest persistence in all 192
persistence diagrams. For congruence with the rest of the
figures shown in this paper, the results for an average mean
wind speed of 14m/s are shown in Fig. E] to exemplify the
procedure.
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Fig. 9: Persistence images of the tower spectra for the four
scenarios considered: normal (top, left), ice in 1 blade (top,
right), ice in 2 blades (bottom, left) and ice in 3 blades (bottom,
right), for a simulation with mean wind speed of 14 m/s and
NTM, IB wind turbulence.

As expected, the cases with asymmetrical ice mass distri-

bution (top, right and bottom, left) are clearly distinguishable
from the normal case (top, left), while the symmetrical ice
mass distribution case (bottom, right) is completely indis-
tinguishable from the normal case at this scale. The slight
differences between the last two are shown in more detail
in Fig. [I0] where the original persistence diagrams have
been cropped in the range [0, 0.024] before embedding them
into persistence images, and the standard deviation of the
smoothing Gaussian has been reduced to o = 0.002.

1.0 1.0
0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.6
05 & o 05
04 & 0.4
03 03
0.2 0.2
0.1 0.1

0.0 0.0

0.0 0.006 0.012 0.018 0.024 0.0 0.006 0.012 0.018 0.024
Birth Birth

Persistence
Persistence
o
>
IS
S

Fig. 10: Zoom in into the persistence images of Fig. E] for the
normal scenario and the case with ice in 3 blades.

Then, Fig. shows an example comparing the normal
scenario and the case with symmetrical ice mass distribution
across 3 blades, this time using the persistence images derived
from flapwise root bending moments, which exhibit a more
pronounced dissimilarity compared to those shown in Fig. [9]
(top, left and bottom, right) without needing to zoom in as
in Fig. As expected, persistence images derived from
tower deflection prove more suitable for distinguishing be-
tween normal and asymmetric ice mass distributions, whereas
those obtained from flapwise root bending moments can be
employed to differentiate between normal and symmetric ice
mass distributions.
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Fig. 11: Persistence images of flapwise root bending moments
for the normal scenario and the case with ice across 3 blades
for a simulation with mean wind speed of 14 m/s.

CNNs are selected for persistence image classification due
to their accuracy and generalisation capabilities when learning
hierarchical features directly from raw pixel data, which keeps
them as state-of-the-art for image-related tasks.

The CNN used for both tasks has a relatively simple
architecture: it begins with a convolutional layer comprising 32
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filters, each with a 3 x 3 kernel size, using ReLU activation
functions. Subsequently, a max-pooling layer with a 2 x 2
pool size is applied to reduce the spatial dimensions of the
feature maps by selecting the maximum value within each
2 x 2 region. This is followed by another convolutional layer
with 64 filters and a subsequent max-pooling layer. Then, a
flatten layer is introduced to convert the 2D feature maps into
a 1D array, preparing them for input into the fully connected
layers. Two fully connected layers follow, with 128 and 64
neurons respectively and ReLU activation functions. A dropout
regularisation layer with a dropout rate of 0.5 is then added,
meaning half of the neurons will be randomly dropped during
training, followed by a batch normalisation layer. Finally,
an output layer with as many neurons as classes (3 for the
first task and 2 for the second task) with softmax activation
function outputs probabilities for each class. The model is
compiled specifying a categorical cross-entropy loss function
and employing the Adam optimiser. The resulting accuracy is
100% for all wind speed intervals and for both tasks. As an
example, Fig.[12|shows the learning curves for the second task,
classification of normal scenario and the case with symmetrical
ice mass distribution in 3 blades, for 14m/s average mean
wind speed. Refer to Fig. [I5] in the Appendix to see the
loss curves for the rest of the wind speed intervals within
the operating range considered.

Training Loss
0.6 Validation Loss

Accuracy
Lo
o

Training Accuracy 0.1
Validation Accuracy

0.0
0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch

Fig. 12: Model accuracy (left) and loss (right) for the classifi-
cation problem of persistence images from the normal and ice
in 3 blades scenarios, with 14 m/s average mean wind speed.

VII. CLASSIFICATION OF PERSISTENCE RANK FUNCTION
FPCA ScORES USING SVM

Persistence rank functions, as shown in Fig. @ offer a more
precise representation of topological information compared to
persistence images, which essentially depict the persistence
diagram as seen through a blurry lens. In this analysis,
all regions in the persistence rank functions were weighted
equally, and a grid size of 153 x 153 was defined based
on the birth/death range and desired increment in the grid.
Analogously to the persistence images, the birth/death range is
the same for all persistence rank functions for each wind speed
interval, and it is computed based on the connected component
with longest lifetime in all 288 persistence diagrams available
from root bending moments. Using persistence rank functions
enables the application of FPCA to derive scores associated
with principal component functions. It is hoped that these
scores lie in distinct regions within the principal component
space, enabling the use of SVMs for classification. FPCA is

well established in the literature, see for example [27] for an
introduction of FPCA to persistence rank functions and their
use.
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Fig. 13: Persistence rank functions of the blade flapwise root
bending moments for the normal scenario and the scenario
with ice in 3 blades for the simulation with mean wind speed
of 14m/s and NTM, IB wind turbulence.

An example of the obtained principal component weight
scores for the first two principal components (p.c.) with 14 m/s
average mean wind speed are plotted in the principal compo-
nent space spanned by the first two p.c. in Fig. and an SVM
with radial basis function kernel and default hyperparameters,
C = 1 and v = 1/(no. of p.c. X p.c. variance), is trained
with these scores to define the decision boundary seen in the
figure. Refer to Fig. [I6]in the Appendix to see the decision
boundaries for the rest of the wind speed intervals within the
operating range considered. The FPCA scores were calculated
for both NTM and ETM turbulence models, as well as for
IB and IC wind classes. Examining the second column of
Table [TV] reveals that relying solely on the first two principal
components fails to mitigate false positives, which are un-
acceptable in an industrial setting. Consequently, increasing
the number of principal components used to characterise the
persistence rank functions becomes necessary. The resulting
classification accuracies using 6 and 12 principal components
are shown in the third and fourth columns of Table [[V]
Achieving 100% classification accuracy requires a minimum
of 12 principal components. As computation time is not a
concern, this dimensionality is considered optimal.
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Fig. 14: FPCA scores for the simulation with mean wind speed
of 14m/s.
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TABLE IV: Accuracy FPCA+SVM vs. CNN

Wind 2D FPCA | 6D FPCA 12D FPCA CNN
speed + SVM + SVM + SVM

8m/s 96.6% 100%

10m/s 96.6% 100%

12m/s 96.6% 100%

14m/s 97.4% 100%

16 m/s 98.3% 100% 100% 100%
18m/s 91.7% 99.5%

20m/s 89.1% 90.9%

22m/s 81.3% 90.9%

24m/s 82.6% 94.3%

VIII. CONCLUSION

In this work, signals from tower foreaft deflection and
blade flapwise root bending moments are selected as the main
variables affected by the accumulation of ice in the blades, and
are used for its diagnosis. Data is simulated using a simulation
model provided by Emerson in the software GH Bladed,
and different wind conditions were used to ensure realistic
results: normal turbulence model (NTM), extreme turbulence
model (ETM), and wind classes IB and IC. Tower deflection
is used to distinguish asymmetrical ice mass distribution in
one or two blades form normal operating conditions, as it
provokes noticeable oscillations in this variable due to the
mass imbalance, while the presence of symmetrical ice mass
distribution in the 3 blades can only be perceived in the flap-
wise root bending moments. A normalised unscented Kalman
filter (NUKF) is used together with a standard aerodynamic
and mechanical model to estimate tower deflection, while
measurements from root bending moments are assumed to
be directly obtained from blade root sensors. The signals are
subsequently analysed in the frequency domain by applying
the fast Fourier transform (FFT), and 0-dimensional persistent
homology from topological data analysis (TDA) is used to
analyse the lifetime of the sub-level sets of the spectra from
the mentioned four different classes. The objective is to use
the O-dimensional topological features to obtain a clearer
supervised learning classification problem than when dealing
with the spectra directly. This method encodes the sub-level
set information in persistence diagrams, which are embedded
in two different persistence summaries: persistence images and
persistence rank functions. Each embedding allows for the
application of a specific machine learning method, whether
it involves direct classification of persistence images using
convolutional neural networks (CNNs), or further feature
extraction of persistence rank functions through functional
principal component analysis (FPCA) to generate a set of
scores, that can then be used to define a decision boundary
using support vector machines (SVMs). The comparison of the
two methods show that both can be tuned to result in a precise
and reliable classification problem. Future work will introduce
specific weighting functions to enhance the informativeness of
these topological summaries, as well as compare them to other
alternatives such as persistence landscapes or accumulated
persistence functions.
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APPENDIX
RESULTS FOR ALL WIND SPEED INTERVALS

The results obtained for all wind speed intervals within the
operating range considered are shown hereunder. Figure [I3]
shows the CNN loss curves, and Fig. [T depicts the decision
regions defined by SVMs for the persistence rank function
FPCA scores of the first two principal components.
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Fig. 15: CNN loss function for the classification of persistence
images from blade flapwise root bending moments into normal
scenario and the scenario with ice in 3 blades, for wind speeds
ranging from 8 m/s to 24 m/s in intervals of 2m/s.
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