References
1. Getahun H, Matteelli A, Abubakar I, Aziz MA, Baddeley A, Barreira D,
et al. Management of latent Mycobacterium tuberculosis infection: WHO
guidelines for low tuberculosis burden countries. The European
respiratory journal. 2015;46(6):1563-76.
2. Houben RM, Dodd PJ. The Global Burden of Latent Tuberculosis
Infection: A Re-estimation Using Mathematical Modelling. PLoS medicine.
2016;13(10):e1002152.
3. Alvarez AH, Flores-Valdez MA. Can immunization with Bacillus
Calmette-Guérin be improved for prevention or therapy and elimination of
chronic Mycobacterium tuberculosis infection? Expert review of vaccines.
2019;18(12):1219-27.
4. Van Der Meeren O, Hatherill M, Nduba V, Wilkinson RJ, Muyoyeta M, Van
Brakel E, et al. Phase 2b Controlled Trial of M72/AS01(E) Vaccine to
Prevent Tuberculosis. The New England journal of medicine.
2018;379(17):1621-34.
5. Organization WH. Global tuberculosis report 2019. 2019:179.
6. Tang X, Deng W, Xie J. Novel insights into Mycobacterium antigen Ag85
biology and implications in countermeasures for M. tuberculosis.
Critical reviews in eukaryotic gene expression. 2012;22(3):179-87.
7. Karbalaei Zadeh Babaki M, Soleimanpour S, Rezaee SA. Antigen 85
complex as a powerful Mycobacterium tuberculosis immunogene: Biology,
immune-pathogenicity, applications in diagnosis, and vaccine design.
Microbial pathogenesis. 2017;112:20-9.
8. Huygen K. The Immunodominant T-Cell Epitopes of the
Mycolyl-Transferases of the Antigen 85 Complex of M. tuberculosis.
Frontiers in immunology. 2014;5:321.
9. Liang Y, Wu X, Zhang J, Li N, Yu Q, Yang Y, et al. The treatment of
mice infected with multi-drug-resistant Mycobacterium tuberculosis using
DNA vaccines or in combination with rifampin. Vaccine.
2008;26(35):4536-40.
10. Liang Y, Wu X, Zhang J, Xiao L, Yang Y, Bai X, et al. Immunogenicity
and therapeutic effects of Ag85A/B chimeric DNA vaccine in mice infected
with Mycobacterium tuberculosis. FEMS immunology and medical
microbiology. 2012;66(3):419-26.
11. Liang Y, Bai X, Zhang J, Song J, Yang Y, Yu Q, et al. Ag85A/ESAT-6
chimeric DNA vaccine induces an adverse response in
tuberculosis-infected mice. Molecular medicine reports.
2016;14(2):1146-52.
12. Liang Y, Zhang J, Yang Y, Bai X, Yu Q, Li N, et al. Immunogenicity
and therapeutic effects of recombinant Ag85AB fusion protein vaccines in
mice infected with Mycobacterium tuberculosis. Vaccine.
2017;35(32):3995-4001.
13. Liang Y, Cui L, Xiao L, Liu X, Yang Y, Ling Y, et al.
Immunotherapeutic Effects of Different Doses of Mycobacterium
tuberculosis ag85a/b DNA Vaccine Delivered by Electroporation. Frontiers
in immunology. 2022;13:876579.
14. Wang C, Fu R, Chen Z, Tan K, Chen L, Teng X, et al. Immunogenicity
and protective efficacy of a novel recombinant BCG strain overexpressing
antigens Ag85A and Ag85B. Clinical & developmental immunology.
2012;2012:563838.
15. Li W, Deng G, Li M, Zeng J, Zhao L, Liu X, et al. A recombinant
adenovirus expressing CFP10, ESAT6, Ag85A and Ag85B of Mycobacterium
tuberculosis elicits strong antigen-specific immune responses in mice.
Molecular immunology. 2014;62(1):86-95.
16. Gupta SK, Wilson T, Maclean PH, Rehm BHA, Heiser A, Buddle BM, et
al. Mycobacterium avium subsp. paratuberculosis antigens induce cellular
immune responses in cattle without causing reactivity to tuberculin in
the tuberculosis skin test. Frontiers in immunology. 2022;13:1087015.
17. Sivakumaran D, Blatner G, Bakken R, Hokey D, Ritz C, Jenum S, et al.
A 2-Dose AERAS-402 Regimen Boosts CD8(+) Polyfunctionality in
HIV-Negative, BCG-Vaccinated Recipients. Frontiers in immunology.
2021;12:673532.
18. Nemes E, Hesseling AC, Tameris M, Mauff K, Downing K, Mulenga H, et
al. Safety and Immunogenicity of Newborn MVA85A Vaccination and
Selective, Delayed Bacille Calmette-Guerin for Infants of Human
Immunodeficiency Virus-Infected Mothers: A Phase 2 Randomized,
Controlled Trial. Clinical infectious diseases : an official publication
of the Infectious Diseases Society of America. 2018;66(4):554-63.
19. Smaill F, Xing Z. Human type 5 adenovirus-based tuberculosis
vaccine: is the respiratory route of delivery the future? Expert review
of vaccines. 2014;13(8):927-30.
20. Wajja A, Nassanga B, Natukunda A, Serubanja J, Tumusiime J, Akurut
H, et al. Safety and immunogenicity of ChAdOx1 85A prime followed by
MVA85A boost compared with BCG revaccination among Ugandan adolescents
who received BCG at birth: a randomised, open-label trial. The Lancet
Infectious diseases. 2023.
21. Shurygina AP, Zabolotnykh N, Vinogradova T, Khairullin B, Kassenov
M, Nurpeisova A, et al. Preclinical Evaluation of TB/FLU-04L-An
Intranasal Influenza Vector-Based Boost Vaccine against Tuberculosis.
International journal of molecular sciences. 2023;24(8).
22. Tkachuk AP, Bykonia EN, Popova LI, Kleymenov DA, Semashko MA,
Chulanov VP, et al. Safety and Immunogenicity of the GamTBvac, the
Recombinant Subunit Tuberculosis Vaccine Candidate: A Phase II,
Multi-Center, Double-Blind, Randomized, Placebo-Controlled Study.
Vaccines. 2020;8(4).
23. Hussein J, Zewdie M, Yamuah L, Bedru A, Abebe M, Dagnew AF, et al. A
phase I, open-label trial on the safety and immunogenicity of the
adjuvanted tuberculosis subunit vaccine H1/IC31® in people living in a
TB-endemic area. Trials. 2018;19(1):24.
24. Bekker LG, Dintwe O, Fiore-Gartland A, Middelkoop K, Hutter J,
Williams A, et al. A phase 1b randomized study of the safety and
immunological responses to vaccination with H4:IC31, H56:IC31, and BCG
revaccination in Mycobacterium tuberculosis-uninfected adolescents in
Cape Town, South Africa. EClinicalMedicine. 2020;21:100313.
25. Guo X, Lu J, Li J, Du W, Shen X, Su C, et al. The Subunit AEC/BC02
Vaccine Combined with Antibiotics Provides Protection in Mycobacterium
tuberculosis-Infected Guinea Pigs. Vaccines. 2022;10(12).
26. Jungblut PR, Schaible UE, Mollenkopf HJ, Zimny-Arndt U, Raupach B,
Mattow J, et al. Comparative proteome analysis of Mycobacterium
tuberculosis and Mycobacterium bovis BCG strains: towards functional
genomics of microbial pathogens. Molecular microbiology.
1999;33(6):1103-17.
27. Downing KJ, Betts JC, Young DI, McAdam RA, Kelly F, Young M, et al.
Global expression profiling of strains harbouring null mutations reveals
that the five rpf-like genes of Mycobacterium tuberculosis show
functional redundancy. Tuberculosis (Edinburgh, Scotland).
2004;84(3-4):167-79.
28. Mattow J, Jungblut PR, Schaible UE, Mollenkopf HJ, Lamer S,
Zimny-Arndt U, et al. Identification of proteins from Mycobacterium
tuberculosis missing in attenuated Mycobacterium bovis BCG strains.
Electrophoresis. 2001;22(14):2936-46.
29. Schuck SD, Mueller H, Kunitz F, Neher A, Hoffmann H, Franken KL, et
al. Identification of T-cell antigens specific for latent mycobacterium
tuberculosis infection. PloS one. 2009;4(5):e5590.
30. Reece ST, Nasser-Eddine A, Dietrich J, Stein M, Zedler U,
Schommer-Leitner S, et al. Improved long-term protection against
Mycobacterium tuberculosis Beijing/W in mice after intra-dermal
inoculation of recombinant BCG expressing latency associated antigens.
Vaccine. 2011;29(47):8740-4.
31. Liang Y, Zhao Y, Bai X, Xiao L, Yang Y, Zhang J, et al.
Immunotherapeutic effects of Mycobacterium tuberculosis rv3407 DNA
vaccine in mice. Autoimmunity. 2018;51(8):417-22.
32. Liang Y, Li X, Yang Y, Xiao L, Liang Y, Mi J, et al. Preventive
effects of Mycobacterium tuberculosis DNA vaccines on the mouse model
with latent tuberculosis infection. Frontiers in immunology.
2023;14:1110843.
33. Coppola M, van den Eeden SJ, Wilson L, Franken KL, Ottenhoff TH,
Geluk A. Synthetic Long Peptide Derived from Mycobacterium tuberculosis
Latency Antigen Rv1733c Protects against Tuberculosis. Clinical and
vaccine immunology : CVI. 2015;22(9):1060-9.
34. Zhang W, Jiang H, Bai YL, Kang J, Xu ZK, Wang LM. Construction and
immunogenicity of the DNA vaccine of Mycobacterium Tuberculosis dormancy
antigen rv1733c. Scandinavian journal of immunology. 2014;79(5):292-8.
35. De Groot AS, Moise L, Terry F, Gutierrez AH, Hindocha P, Richard G,
et al. Better Epitope Discovery, Precision Immune Engineering, and
Accelerated Vaccine Design Using Immunoinformatics Tools. Frontiers in
immunology. 2020;11:442.
36. Fleri W, Paul S, Dhanda SK, Mahajan S, Xu X, Peters B, et al. The
Immune Epitope Database and Analysis Resource in Epitope Discovery and
Synthetic Vaccine Design. Frontiers in immunology. 2017;8:278.
37. Oli AN, Obialor WO, Ifeanyichukwu MO, Odimegwu DC, Okoyeh JN,
Emechebe GO, et al. Immunoinformatics and Vaccine Development: An
Overview. ImmunoTargets and therapy. 2020;9:13-30.
38. Urrutia-Baca VH, Gomez-Flores R, De La Garza-Ramos MA, Tamez-Guerra
P, Lucio-Sauceda DG, Rodríguez-Padilla MC. Immunoinformatics Approach to
Design a Novel Epitope-Based Oral Vaccine Against Helicobacter pylori.
Journal of computational biology : a journal of computational molecular
cell biology. 2019;26(10):1177-90.
39. Dimitrov I, Bangov I, Flower DR, Doytchinova I. AllerTOP v.2–a
server for in silico prediction of allergens. Journal of molecular
modeling. 2014;20(6):2278.
40. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0:
discriminating signal peptides from transmembrane regions. Nature
methods. 2011;8(10):785-6.
41. Shen HB, Chou KC. A top-down approach to enhance the power of
predicting human protein subcellular localization: Hum-mPLoc 2.0.
Analytical biochemistry. 2009;394(2):269-74.
42. Doytchinova IA, Flower DR. VaxiJen: a server for prediction of
protective antigens, tumour antigens and subunit vaccines. BMC
bioinformatics. 2007;8:4.
43. Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Raghava GP. In
silico approach for predicting toxicity of peptides and proteins. PloS
one. 2013;8(9):e73957.
44. Ye J, McGinnis S, Madden TL. BLAST: improvements for better sequence
analysis. Nucleic acids research. 2006;34(Web Server issue):W6-9.
45. Geourjon C, Deléage G. SOPMA: significant improvements in protein
secondary structure prediction by consensus prediction from multiple
alignments. Computer applications in the biosciences : CABIOS.
1995;11(6):681-4.
46. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et
al. Highly accurate protein structure prediction with AlphaFold. Nature.
2021;596(7873):583-9.
47. Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the
recognition of errors in three-dimensional structures of proteins.
Nucleic acids research. 2007;35(Web Server issue):W407-10.
48. Vakser IA. Long-distance potentials: an approach to the
multiple-minima problem in ligand-receptor interaction. Protein
engineering. 1996;9(1):37-41.
49. Protein Data Bank: the single global archive for 3D macromolecular
structure data. Nucleic acids research. 2019;47(D1):D520-d8.
50. Krissinel E, Henrick K. Inference of macromolecular assemblies from
crystalline state. Journal of molecular biology. 2007;372(3):774-97.
51. Ponomarenko J, Bui HH, Li W, Fusseder N, Bourne PE, Sette A, et al.
ElliPro: a new structure-based tool for the prediction of antibody
epitopes. BMC bioinformatics. 2008;9:514.
52. Wang P, Sidney J, Kim Y, Sette A, Lund O, Nielsen M, et al. Peptide
binding predictions for HLA DR, DP and DQ molecules. BMC bioinformatics.
2010;11:568.
53. Dhanda SK, Vir P, Raghava GP. Designing of interferon-gamma inducing
MHC class-II binders. Biology direct. 2013;8:30.
54. Dhanda SK, Gupta S, Vir P, Raghava GP. Prediction of IL4 inducing
peptides. Clinical & developmental immunology. 2013;2013:263952.
55. Dhall A, Patiyal S, Sharma N, Usmani SS, Raghava GPS. Computer-aided
prediction and design of IL-6 inducing peptides: IL-6 plays a crucial
role in COVID-19. Briefings in bioinformatics. 2021;22(2):936-45.
56. Nagpal G, Usmani SS, Dhanda SK, Kaur H, Singh S, Sharma M, et al.
Computer-aided designing of immunosuppressive peptides based on IL-10
inducing potential. Scientific reports. 2017;7:42851.
57. Andreatta M, Nielsen M. Gapped sequence alignment using artificial
neural networks: application to the MHC class I system. Bioinformatics
(Oxford, England). 2016;32(4):511-7.
58. Calis JJ, Maybeno M, Greenbaum JA, Weiskopf D, De Silva AD, Sette A,
et al. Properties of MHC class I presented peptides that enhance
immunogenicity. PLoS computational biology. 2013;9(10):e1003266.
59. Bui HH, Sidney J, Dinh K, Southwood S, Newman MJ, Sette A.
Predicting population coverage of T-cell epitope-based diagnostics and
vaccines. BMC bioinformatics. 2006;7:153.
60. Alland C, Moreews F, Boens D, Carpentier M, Chiusa S, Lonquety M, et
al. RPBS: a web resource for structural bioinformatics. Nucleic acids
research. 2005;33(Web Server issue):W44-9.
61. Rapin N, Lund O, Bernaschi M, Castiglione F. Computational
immunology meets bioinformatics: the use of prediction tools for
molecular binding in the simulation of the immune system. PloS one.
2010;5(4):e9862.
62. Michael R. Green JS. Molecular Cloning: A Laboratory Manual Science
Press Co., Ltd; 2017.
63. Michael R. Green JS. Molecular Cloning: A Laboratory Manual (Fourth
Edition): Three-Volume Set. 2012.
64. Moodley A, Fatoba A, Okpeku M, Emmanuel Chiliza T, Blessing Cedric
Simelane M, Pooe OJ. Reverse vaccinology approach to design a
multi-epitope vaccine construct based on the Mycobacterium tuberculosis
biomarker PE_PGRS17. Immunologic research. 2022;70(4):501-17.
65. Scheiblhofer S, Laimer J, Machado Y, Weiss R, Thalhamer J. Influence
of protein fold stability on immunogenicity and its implications for
vaccine design. Expert review of vaccines. 2017;16(5):479-89.
66. Saylor K, Gillam F, Lohneis T, Zhang C. Designs of Antigen Structure
and Composition for Improved Protein-Based Vaccine Efficacy. Frontiers
in immunology. 2020;11:283.
67. Stewart P, Patel S, Comer A, Muneer S, Nawaz U, Quann V, et al. Role
of B Cells in Mycobacterium Tuberculosis Infection. Vaccines.
2023;11(5).
68. Accapezzato D, Visco V, Francavilla V, Molette C, Donato T, Paroli
M, et al. Chloroquine enhances human CD8+ T cell responses against
soluble antigens in vivo. The Journal of experimental medicine.
2005;202(6):817-28.
69. Delamarre L, Pack M, Chang H, Mellman I, Trombetta ES. Differential
lysosomal proteolysis in antigen-presenting cells determines antigen
fate. Science (New York, NY). 2005;307(5715):1630-4.
70. Delamarre L, Couture R, Mellman I, Trombetta ES. Enhancing
immunogenicity by limiting susceptibility to lysosomal proteolysis. The
Journal of experimental medicine. 2006;203(9):2049-55.
71. Rodriguez MS, Desterro JM, Lain S, Lane DP, Hay RT. Multiple
C-terminal lysine residues target p53 for ubiquitin-proteasome-mediated
degradation. Molecular and cellular biology. 2000;20(22):8458-67.
72. Khamsri B, Fujita M, Kamada K, Piroozmand A, Yamashita T, Uchiyama
T, et al. Effects of lysine to arginine mutations in HIV-1 Vif on its
expression and viral infectivity. International journal of molecular
medicine. 2006;18(4):679-83.
73. Timms RT, Zhang Z, Rhee DY, Harper JW, Koren I, Elledge SJ. A
glycine-specific N-degron pathway mediates the quality control of
protein N-myristoylation. Science (New York, NY). 2019;365(6448).
74. Faridgohar M, Nikoueinejad H. New findings of Toll-like receptors
involved in Mycobacterium tuberculosis infection. Pathogens and global
health. 2017;111(5):256-64.
75. Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking
and its influence on LPS-induced pro-inflammatory signaling. Cellular
and molecular life sciences : CMLS. 2021;78(4):1233-61.
76. Geng J, Shi Y, Zhang J, Yang B, Wang P, Yuan W, et al. TLR4
signalling via Piezo1 engages and enhances the macrophage mediated host
response during bacterial infection. Nature communications.
2021;12(1):3519.
77. Saelee C, Hanthamrongwit J, Soe PT, Khaenam P, Inthasin N, Ekpo P,
et al. Toll-like receptor-mediated innate immune responses by
recognition of the recombinant dormancy-associated Mycobacterium
tuberculosis proteins Rv2659c and Rv1738. PloS one. 2022;17(9):e0273517.
78. Pahari S, Negi S, Aqdas M, Arnett E, Schlesinger LS, Agrewala JN.
Induction of autophagy through CLEC4E in combination with TLR4: an
innovative strategy to restrict the survival of Mycobacterium
tuberculosis. Autophagy. 2020;16(6):1021-43.
79. Jo EK, Park JK, Dockrell HM. Dynamics of cytokine generation in
patients with active pulmonary tuberculosis. Current opinion in
infectious diseases. 2003;16(3):205-10.
80. Lienhardt C, Azzurri A, Amedei A, Fielding K, Sillah J, Sow OY, et
al. Active tuberculosis in Africa is associated with reduced Th1 and
increased Th2 activity in vivo. European journal of immunology.
2002;32(6):1605-13.
81. Scriba TJ, Netea MG, Ginsberg AM. Key recent advances in TB vaccine
development and understanding of protective immune responses against
Mycobacterium tuberculosis. Seminars in immunology. 2020;50:101431.
82. Saqib M, Khatri R, Singh B, Gupta A, Kumar A, Bhaskar S.
Mycobacterium indicus pranii as a booster vaccine enhances BCG induced
immunity and confers higher protection in animal models of tuberculosis.
Tuberculosis (Edinburgh, Scotland). 2016;101:164-73.
83. Biselli R, Mariotti S, Sargentini V, Sauzullo I, Lastilla M, Mengoni
F, et al. Detection of interleukin-2 in addition to interferon-gamma
discriminates active tuberculosis patients, latently infected
individuals, and controls. Clinical microbiology and infection : the
official publication of the European Society of Clinical Microbiology
and Infectious Diseases. 2010;16(8):1282-4.
84. Penn-Nicholson A, Tameris M, Smit E, Day TA, Musvosvi M, Jayashankar
L, et al. Safety and immunogenicity of the novel tuberculosis vaccine
ID93 + GLA-SE in BCG-vaccinated healthy adults in South Africa: a
randomised, double-blind, placebo-controlled phase 1 trial. The Lancet
Respiratory medicine. 2018;6(4):287-98.
85. Ogongo P, Tezera LB, Ardain A, Nhamoyebonde S, Ramsuran D, Singh A,
et al. Tissue-resident-like CD4+ T cells secreting IL-17 control
Mycobacterium tuberculosis in the human lung. The Journal of clinical
investigation. 2021;131(10).
86. Wik JA, Skålhegg BS. T Cell Metabolism in Infection. Frontiers in
immunology. 2022;13:840610.
87. Serbina NV, Lazarevic V, Flynn JL. CD4(+) T cells are required for
the development of cytotoxic CD8(+) T cells during Mycobacterium
tuberculosis infection. Journal of immunology (Baltimore, Md : 1950).
2001;167(12):6991-7000.
88. Okada M, Kita Y, Nakajima T, Hashimoto S, Nakatani H, Nishimatsu S,
et al. The study of novel DNA vaccines against tuberculosis: induction
of pathogen-specific CTL in the mouse and monkey models of tuberculosis.
Human vaccines & immunotherapeutics. 2013;9(3):515-25.
89. Lew MH, Norazmi MN, Nordin F, Tye GJ. A novel peptide vaccination
augments cytotoxic CD8(+) T-cell responses against Mycobacterium
tuberculosis HspX antigen. Immunobiology. 2022;227(3):152201.
90. Smith SM, Brookes R, Klein MR, Malin AS, Lukey PT, King AS, et al.
Human CD8+ CTL specific for the mycobacterial major secreted antigen
85A. Journal of immunology (Baltimore, Md : 1950). 2000;165(12):7088-95.
91. Launois P, DeLeys R, Niang MN, Drowart A, Andrien M, Dierckx P, et
al. T-cell-epitope mapping of the major secreted mycobacterial antigen
Ag85A in tuberculosis and leprosy. Infection and immunity.
1994;62(9):3679-87.
Table 1. The servers and databases of bioinformatics analysis used in
this study