Abstract
Differential geometry is a powerful tool in various branches of science, especially in theoretical physics. Ordinary differential geometry requires differentiable manifolds. This research paper shows how concepts of differential geometry can also be applied to pure topological spaces. Such a theory is based on concepts like cohomology theory. It allows to define a curvature operator also on pure topological spaces without connection. The main advantage of this theory is that the only required information about the topological spaces is the structure of these spaces. A formulation of quantum gravity is also possible with this theory.1. Introduction
Since differential geometry is applied very successful in sciences like theoretical physics (e.g. general relativity, gauge theory), computer graphics and many more, there are no significant doubts about the logical structure of this branch of mathematics. However, differential geometry is based mainly on the requirement of the smooth manifold. Also the theory of Lie groups which is used very frequently in theoretical physics bases on smooth manifold. Despite the great success of this concepts there is remaining a disadvantage which is the failure of derivatives at certain regions of the manifold. Such a problem is avoided in discrete differential geometry due to the fact that only finitely many objects (e.g. simplices) are used. However, many structures cannot be modeled sufficiently accurate with discrete differential geometry. Another possibility of introducing a differential even if the manifold is not differentiable in ordinary analysis is Nonstandard analysis (Schmieden 1958).
This research paper focuses also on the unification of quantum theory with general relativity. There is still not found a way how to quantize general relativity (Hamber 2009). The reason is because of the singularity at the Big Bang that is predicted by the classical general relativity theory which is based on the geometry of smooth manifolds. Heisenberg’s incertainty principle with momentum uncertainty and length resolution states that for the continuum limit, i.e. , the incertainty of momentum becomes infinite which is clearly unphysical. To solve this problem, various theories of quantum gravity were proposed. An example of such a theory is String theory (Schwarz 2007) that assumes that elementary particles are not pointlike such that . Other approaches of quantum gravity are Loop Quantum Gravity (Ashtekar 1987) and Causal Dynamical Triangulation (Loll 1998). These theories provide a discretization of spacetime, where Causal Dynamical Triangulation relies on discrete differential geometry. There are still no experimental validations of these theories and therefore the plausibility of these theories is still an open question in theoretical physics.
Also an open question is how to define a proper directional derivative in general manifolds or even in topological spaces. Formal descriptions of manifolds are existing in mathematics literature; one of these are pseudogroups (Golab 1939). Another formal description of manifolds is synthetic differential geometry (Katz 1970). This research paper shows how topological spaces can be formalized with the use of semigroups and category theoretical elements. With the definition of the Esemigroups calculus on general topological spaces can be performed. The groups are called E groups because the letter “E” is an acronym of the word “Equalizer”; one can also call this theory “EqualizerTheory”. After the basic definitions and theorems about such topological spaces the application to quantum gravity is shown. It will be shown the following
Theorem 1.1: A quantum gravity theory is possible without singularities.
The proof of this theorem is given in section 2 of this research paper.
2. Theoretical Concept
The ETheory is based only on topological spaces that have finite cardinality. Here, the main ingredient of the ETheory are the Esemigroups (groups without the inverse and identity property).
Definition 2.1: May be a semigroup, where operations between elements are only multiplications. If the maximum number of indices that are attached on an element of is , this semigroup has the characteristic . The semigroup is called an Esemigroup if the following properties are satisfied:
(i) or more general ; here the elements are called generators of
(ii) The group contains the empty element with and arbitrary .
(iii) If there is an equality in indices, i.e. then
(iv) The semigroup is commutative.
Property (iii) of the definition 2.1 contains the equalizer property: The set is clearly not empty for and if the element has two or more factors that are equal, it holds . Esemigroups are strongly related to relations between objects.
Example 2.2: The set of all possible (generalized) relations between objects which also includes the objects is an Esemigroup of characteristic .
A very important fact is that Esemigroups can formalize topological spaces.
Lemma 2.3: Let be a topological space which can be covered by minimal closed subsets , i.e. and cannot be subdivided into smaller subsets. Then it exists a functor between the category of topological spaces and the category of Esemigroups .
Proof: A closed subset has a boundary that can be determined by computing the following map: . Since is a minimal subset, it can be regarded as an element of . An Esemigroup of characteristic n has only one element with due to property (iii) of definition 2.1. Therefore, one can define an isomorphism where is the Esemigroup associated with subset . The set of all elements can be obtained by removing one generator from the factorization of ; this map is denoted by . Finally, one can construct a commutative diagram:
and therefore the functor exists.
From Lemma 2.3 a calculus on topological spaces can be defined that is similar to the calculus on manifolds (exterior calculus).
Lemma 2.4: For every closed subset that covers a topological space a long exact sequence with can be constructed if for arbitrary .
Proof: If for arbitrary , there is no empty element contained in the sets for due to the equalizer property. Hence, every element of is welldefined. Defining the map as where the superscript denotes that this index is omitted. Then it is easy to show that it holds the exactness condition .
Clearly one can apply a functor with a group to the exact sequence constructed in Lemma 2.4. This leads to an exact sequence in functions on a topological space (by respecting Lemma 2.3). Such an operation is very similar to the conversion of the simplicial complex to the deRham complex; a Hodge dual can be defined analogously.
From ordinary differential geometry it is known that for a scalar it follows with the 2form torsion tensor and for a vector it follows with the 2form curvature tensor if is the exterior covariant derivative. Both quantities are based on the loss of exactness in a chain complex. Since the ETheory related to topological spaces is based on a chain complex, one can define a curvature in topological spaces.
Theorem 2.5: A curvature value (the analogous quantity is the curvature 2form in differential geometry) can be assigned to every closed subset .
Proof: The exact sequence of Lemma 2.4 requires that the Esemigroup has no nonempty equalizers. If there are nonempty equalizers, the chain complex loses the exactness. Now one can define an indicator function that is applied on a Esemigroup element. This indicator function has always the value 1 with exception if it is applied on an empty element; this indicator function has the value 0 when applied on an empty element. therefore, this indicator function measures the presence of equalizers. The curvature value can be obtained by computing the inexactness function . Here, the indicator function is evaluated on the element , because it represents (by applying the functor used in Lemma 2.3) the whole closed subset . Equation (*) can also be written as since the inexactness function lies also on . Comparing this equation with the equation with curvature operator of differential geometry leads to the choice that it can be set ; it holds , because the element has to be welldefined (in other words: this element is not the empty element).
Theoretical frameworks given in this section of this research papers can be used to rewrite General relativity in a form such that it can be quantized without UVdivergences. It is clear that the action functional of General relativity has the form with a coupling constant and tetrads . Original General relativity has welldefined distance and angle values, whereas general topological spaces have not such values. To assign distance measures to a general topological space governed by Esemigroups (as described in Lemma 2.3) it is assumed that the two neighboring closed subsets are separated exactly one Planck length (or one Planck time). With this assumption one can get rid of pure geometrical quantities like the tetrads.
Proof of Theorem 1.1: The integration over spacetime is replaced by summation over all closed subsets of the topological space. Also the tetrads and connections are deformed in a manner such that the physical spacetime coincides with a topological space governed by Esemigroups. Hence, the Lagrangian density can be rewritten as , where is the curvature tensor after the deformation process and is a modified coupling constant. The sum can be interpreted as the average curvature value times 16 and hence it makes sense to redefine the action of General relativity in the following way: . Here, is a new coupling constant. Finally, the Feynman path integral for quantum gravity has the form:
The set denotes the set of all possible Esemigroup generators and has the cardinality . For compact topological spaces, is finite if is also finite. For the standard ETheory it is assumed that the sum over can be omitted, because (since the Minkowski spacetime has 4 topological dimensions).
The ETheory applied to gravity is a quantum field theory that is based on the nonhomogeny of spacetime; by Noether’s theorem it is a theory that does not conserve energy and momentum.
3. Conclusions
With the use of commutative semigroup theory, a quantization of gravity is possible due to the introduction of a curvature measure. Such a theory has only equalizers as a degree of freedom that are simply Boolean variables (is there an equalizer in semigroup element or not?). This makes the theory easy to implement in computer simulations. A disadvantage of this theory is that the new action which is linked to the loss of exactness in a chain complex has a small deviation from the original General relativity.
References
Schmieden, C. et al. “Eine Erweiterung der Infinitesimalrechnung.” Mathematische Zeitschrift, 1958, 69: 139
Hamber, H. W. “Quantum Gravitation  The Feynman Path Integral Approach.” Springer Publishing, 2009. ISBN 9783540852926
Schwarz, J. H. "String Theory: Progress and Problems." Progress of Theoretical Physics Supplement, 2007, 170: 214–226. arXiv:hepth/0702219. Bibcode:2007PThPS.170..214S. doi:10.1143/PTPS.170.214.
Ashtekar, A. "New Hamiltonian formulation of general relativity." Physical Review D, 1987, 36 (6): 1587–1602. Bibcode:1987PhRvD..36.1587A. doi:10.1103/PhysRevD.36.1587
Loll, R ."Discrete Approaches to Quantum Gravity in Four Dimensions". Living Reviews in Relativity, 1998, 1: 13. arXiv:grqc/9805049. Bibcode:1998LRR.....1...13L. doi:10.12942/lrr199813
St. Golab. "Über den Begriff der "Pseudogruppe von Transformationen"." Mathematische Annalen, 1939, 116: 768–780. doi: 10.1007/BF01597390
Katz, N. "Nilpotent connections and the monodromy theorem." IHES Publ. Math., 1970, 39: 175232.
Reviews
Showing 16 Reviews

2
I think you are in the right way by this theory. but may be this theory just in four dimension spacetime, so can you expand the theory in 10 or 11 dimension as string theory ? and how may you think that the energymass can be written by this theory because the theory should has expectations.
your work is in the right way and I hope you more great ideas like this.

1
The theory is a mathematically consistent theory (a recent Review comment of "Patrick Linker", the author of the paper, Shows this). The data does Support author's conclusions. Wish you all the best.

1
Cool and awesome paper.
A good try to give a theory of quantum gravity. 
0
Nice Post, and good Information Sakong QQ


0This is a very well written and useful article. keep up the good work

0This is a very well written and useful article. keep up the good work

0
In any other case we are definitely have a very group wonderful revenue males and females who also cannot design and style, thank
Judi Online Terpercaya 
0I would like to thank you for all the information you give. information your is useful to me.

0Some of these information are really amazing. Thank you for giving me good information.

0Thanks for posting, this is really amazing.

0This is really very nice blog and so informative. Thanks a lot for sharing this article.

0
This is great, you are good, i like your post and i still waiting our next post Bandar Ceme

0
It's not clear what is going on in this paper, except that it is clear that it doesn't do what the author suggests it does. That is, there is no chance that a legitimate quantum theory of gravity is obtained. Would not be considered seriously by any qualified mathematicians or physicists. The author should work with mathematicians and physicists to help himself better understand the deficiencies in these claims.

0
A brilliant paper. Nice discussion on the Big Bang and String Theory. Good work on Differential geometry with introduction to E theory.

0
In all cases it is best but if this fact is written that this paper is related to black holes with giving some comparison with einstein theory then it willl be more helpful for physics students.

The information which you people are given are really good, These look really great.
BandarQ

License
This article and its reviews are distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and redistribution in any medium, provided that the original author and source are credited.
The theory is a quite general theory; of course one can formulate quantum gravity in 10 or 11 (or any other) dimension with Etheory. Applying this Etheory to strings, branes and its background space would reformulate string theory in a new way.
It is no problem to compute expectational values of energymass; for this also the matter Lagrangian is required. From this the energy momentumtensor can be obtained (at first one has to take ordinary qmatter lagrangian in continuum and reformulate this in terms of Esemigroups). Simply using definition of path integral expectation value to this energymomentum tensor leads to the expectation value of energymomentum tensor.